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Anomalous transport of a particle subjected to non-Ohmic damping of the power � in a tilted periodic
potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the
system exhibits two relative motion modes: the locked state and the running state. In an environment of
sub-Ohmic damping �0���1�, the particle should transfer into a running state from a locked state only when
local minima of the potential vanish; hence a synchronization oscillation occurs in the particle’s mean dis-
placement and mean square displacement �MSD�. In particular, the two motion modes are allowed to coexist
in the case of super-Ohmic damping �1���2� for moderate driving forces, namely, where double centers
exist in the velocity distribution. This causes the particle to have faster diffusion, i.e., its MSD reads
��x2�t��=2Deff

���t�eff. Our result shows that the effective power index �eff can be enhanced and is a nonmono-
tonic function of the temperature and the driving force. The mixture of the two motion modes also leads to a
breakdown of the hysteresis loop of the mobility.
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I. INTRODUCTION

There are many physical situations that can be described
by Brownian transport in a tilted periodic potential, for ex-
ample, Josephson junctions �1�, charge-density waves �2�,
superionic conductors �3�, rotation of dipoles in an external
field �4�, phase-locking loops �5�, diffusion on surfaces �6�,
and separation of particles by electrophoresis �7�. The quan-
titative properties of those systems have been discussed in
many papers �8�, such as the dependence of the coherence
level of transport on the temperature, driving force, and
shape of the potential �9�; the huge enhancement of the ef-
fective diffusion coefficient relative to the free diffusion
�10–12�; the response of output to the noise and signal �13�;
and so on �14�. Since theoretical tools and numerical algo-
rithms are not sufficient in non-Markovian dynamics with a
frequency-dependent non-Ohmic damping, most models are
established in an Ohmic damping environment. However, the
frequency-dependent damping is more general because a
large number of stochastic processes do not have Markovian
dynamics.

Recent studies on anomalous diffusion and transport are
mostly limited to the absence of potential, the linear force
case, or subdiffusion in a potential �15�. It is worth pointing
out that the behavior of a particle moving in a periodic po-
tential immersed in a super-Ohmic damping environment
might be far more complicated than that in the Ohmic and
sub-Ohmic damping cases. In comparison with the previous
findings of great enhancement of the effective diffusion co-
efficient �10–12� and the hysteresis loop of mobility �8� in
the Ohmic damping environment, we will perform a detailed
investigation in the present work of the diffusion and the
mobility of a particle subjected to arbitrary non-Ohmic
damping in a corrugated plane. This is in terms of an effec-
tive algorithm proposed by us �16� to numerically solve a
generalized Langevin equation �GLE� with an arbitrary

damping kernel function and corresponding thermal colored
noise.

The paper is organized as follows. In Sec. II, we describe
briefly the anomalous transport model by means of the GLE.
In Sec. III, the two basic quantities of interest, the general-
ized effective diffusion coefficient and the fractional mobil-
ity, are defined; the behaviors of diffusion and mobility are
shown. Finally, we draw a conclusion in Sec. IV.

II. THE MODEL

We consider a Brownian particle moving in a one-
dimensional periodic potential under the influence of non-
Ohmic memory friction and a constant external driving
force. The dynamics of the particle is governed by the fol-
lowing GLE �17,18�:

ẋ�t� = v�t� ,

mv̇�t� = − m�
0

t

��t − t��v�t��dt� + U��x� + �mkBT��t� ,

�1�

where kB is the Boltzmann constant, T is the temperature of
the environment, and ��t� is the damping kernel function,
related to ��t� through the fluctuation-dissipation theorem
�17,19�

���t���t��� = ��	t − t�	� , �2�

where ��t� is a zero mean Gaussian colored noise with spec-
tral density

�	����	2� = 2��
 	�	
�̃
��−1

fc
 	�	
�c

� . �3�

The small-	�	 behavior of �	����2 	 � is a power law charac-
terized by the index �−1. The function fc�	� 	 /�c� is a high-
frequency cutoff function of typical width �c �20�, and*Corresponding author. jdbao@bnu.edu.cn
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�̃��c denotes a reference frequency allowing for the con-
stant m�� to have the dimension of viscosity for any � �21�.
The cases of 0���1 and 1���2 are sub-Ohmic and
super-Ohmic damping, respectively; �=1 is the Ohmic case.
In Eq. �1�, U�x� is considered to be a tilted periodic potential,

U�x� = − U0 cos
2�

	
x� − Fx . �4�

The minima of U�x� vanish when the driving force F is taken
to be the critical value: Fc=U02� /	=1.0.

In the calculation, natural units �m=1 and kB=1�, the di-
mensionless parameters U0=1.0, 	=2�, ��=4.0, the smooth
cutoff function fc=exp�−� /�c� �21� with �c=4.0, and the
time step �t=0.01 are used. The test particles start from the
origin of coordinates and have zero velocity; here 2
104

test particles are used to describe the stochastic distribution
of a Brownian particle.

III. DIFFUSION AND MOBILITY

The quantities of foremost interest are the diffusion coef-
ficient and the mobility. Here we generalize both to the non-
Ohmic damping case with an arbitrary power index �,

D���
ª lim

t→�

1

��1 + �� 0Dt
���x2�t���, �5�


� ª lim
t→�

1

F sin���/2� 0Dt
��x�t���, �6�

where 0Dt
� denotes the fractional derivative. The algorithm

for numerically calculating the two quantities is presented in
the Appendix.

A. Diffusion

We begin our studies from the situation of sub-Ohmic
damping. The case of sub-diffusion dynamics has been dis-
cussed by Goychuk and Hänggi �22�, where the GLE and the
fractional Fokker-Planck equation approaches to the escape
dynamics are used and compared. The escape is governed
asymptotically by a power law whose exponent depends ex-
ponentially on both the barrier height and the temperature. If
the ratio of the barrier height to the temperature is too large,
the diffusion motion in a washboard potential well below a
critical tilt cannot be observed numerically within a reason-
able time window, i.e., nearly all the test particles are con-
fined in the locked state. Therefore, we consider the transport
of a sub-Ohmic damped particle subjected to a large driving
force because of the efficiency of the numerical simulation of
the GLE. Figures 1�a� and 1�b� show the time-dependent
mean square displacement �MSD� and mean displacement of
the particle of �=0.6. When the driving force F is increased
until local minima of the potential vanish, we find that the
MSD of the particle shows a quasiperiodic oscillation. As
long as the MSD of the particle experiences a quasiperiodic
process, the particle will move the distance of a periodic
length �x=2� along the direction of the external force.

In Fig. 2, we plot the space probability distribution of a
sub-Ohmic damped particle at different times. It is seen that,
with the evolution of time, the width of the probability dis-
tribution becomes narrow periodically when the particle
moves in the bottom of a potential well; it is broad when the
particle arrives at the top of the potential. Unlike the normal
Ohmic damped particle �10�, its probability distribution is
centralized. Our results can be interpreted as follows. In the
sub-Ohmic damping environment, the particle has a strong
memory of its initial position and thus the diffusion in the
coordinate space is very slow. If the potential have local
minima, it is quite difficult for the particle to escape from the
potential well, thus the particle is in a locked state during the
period of simulation. As the local minima of the potential

FIG. 1. �a� Time-dependent MSD of a sub-Ohmic damped par-
ticle of �=0.6 and �b� its mean displacement. The parameters used
are F=5.0 and T=0.1.

FIG. 2. Space probability distribution of a sub-Ohmic damped
particle of �=0.6 at different times for F=5.0 and T=0.1.
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vanish, the particle subjected to a large driving force can
enter the running state. Therefore, its distribution width is
modulated by the periodic structure of the potential and thus
the MSD of the particle has a quasiperiodic oscillation.

Figure 3 shows that the quasiperiodic oscillation phenom-
enon becomes inconspicuous when the temperature increases
for T�1.0 at F=5.0. In this case the particle transfers com-
pletely into the running state and hence the structure of the
potential might have less influence on the transport process.

In particular, in the case of super-Ohmic damping, we find
numerically that the asymptotic MSD of the particle can be
approximately written as a power function,

��x2�t�� = 2Deff
���t�eff�T,F�, �7�

where �eff depends on T and F. Indeed, the index �eff is not
always equal to � as for the Ohmic and the sub-Ohmic damp-
ing cases, but varies nonmonotonically with F. For a moder-
ate F, we find an interesting result. The effective power in-
dex �eff exceeds 2 �i.e., ballistic diffusion �23–25�� when the
periodic potential is tilted observably but its local minima
still exist. Further analysis shows that the mysterious diffu-
sion behavior is caused by the mixing of the locked and the
running states.

In Figs. 4�a� and 4�b�, we plot the effective power index
�eff as a function of F for various T and �. It is seen from Fig.
4�a� that the maximal value of �eff versus F forward with
increasing temperature. Similar behavior of �eff for other
super-Ohmic damping cases can also be observed, as shown
in Fig. 4�b�. The smaller the value of �, the larger is F where
the maximum �eff appears. This can be interpreted qualita-
tively as follows. In the non-Markovian rate theory �26�, for
a sufficiently big ratio of barrier height to temperature, su-
perdiffusion in a periodic potential should turn into normal
diffusion because the escape events are exponentially distrib-
uted in time and no overlong jumps can occur, so that �eff
=1 when the tilt of the potential is small. Also, for very large
F and vanishing structure effect of the potential, all the test
particles can move into a running state, thus �eff=�. How-
ever, for a medium tilt, some test particles are confined in the
potential well �in the locked state� and others drift quickly
forward �in the running state�. A proper proportion between
the locked state and the running state should induce the
maximum of the effective power index. Clearly, it becomes
easier for the particle in the locked state to escape the well
and join the running state with increase of either T or �.
Therefore, the maximum of �eff appears in the case of a small
F at high temperature, and in the case of large � at low
temperature.

In Fig. 5, we illustrate the case of �=1.7 at low tempera-
ture �T=0.1� and middle tilt �F=0.75� to depict the coexist-
ence of the two motion modes. The backward and forward
barrier heights are given by

U1 = 2U0�1 − 
 F	

2�U0
�2

+
F	

�
arcsin
 F	

2�U0
� +

F	

2
,

FIG. 4. �Color online� �a� Effective power index �eff vs F for
various T at �=1.7. �b� Effective power index vs F for various � at
T=0.1.

FIG. 3. MSD of the particle with �=1.7 at a large driving force
F=5.0 for various temperatures.

FIG. 5. Space probability distribution of the particle at time t
=50.0. The inset figure is the probability distribution in the locked
state only. The parameters used are �=1.7, F=0.75, and T=0.1.
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U2 = 2U0�1 − 
 F	

2�U0
�2

+
F	

�
arcsin
 F	

2�U0
� −

F	

2
.

�8�

For a low temperature T�U2�U1, the particle oscillates
around the potential well; however, it still escapes over a
barrier with a small probability. Since the barrier crossing
process is quite slow at low temperature, the particle in the
locked state has an approximate Gaussian space distribution
centered at x0 �x0= �	 /2��arcsin�F	 /2�U0��, as shown in
the inset of Fig. 5. Once the test particle climbs over the
barrier, it will no longer be restricted again. Because the next
hill of the tilted periodic potential is lower than the present
one, the kinetic energy of the particle gained from the exter-
nal driving force is greater than the dissipated energy due to
the memory friction. The particle can enter the running state,
so it drifts quickly along the direction of the driving force.
This results in a long tail appearing in the space probability
distribution of the particle. For the Ohmic damped particle,
once escaped over a barrier, it will slide to the next well and
be trapped again. Hence the space probability distribution of
the Ohmic damped particle disintegrates into small pieces
and does not make up a running state.

Figures 6�a� and 6�b� show the coexistence of the two
motion modes of the super-Ohmic damped particle, which
can be seen for the velocity distributions of the particle at
times t=150 and 330. As expected, we do not find the coex-
istence phenomenon of two velocity modes appearing in the
normal diffusion. It is seen that the super-Ohmic damped

particle enters the running state with an increasing probabil-
ity; the difference between the two center velocities in the
running and rocking states becomes large with the evolution
of time. This implies that, as long as the test particles escape
out of the well, they will be accelerated by the corrugated
plane and join the running state. Of course, the present
locked state occurs simply because we cannot observe the
motion on the time scale of our numerical simulation as the
escape rate is very low �22�, but a new locked state relative
to the forward running state should arise once the original
locked state disappears.

B. Mobility

The mobility determined by Eq. �6� as a function of the
driving force is plotted in Fig. 7. Starting from zero tilt and
switching on the tilt F adiabatically, the mobility of the par-
ticle remains zero when all the test particles are in the locked
state until some of them join the running state. In comparison
with the Ohmic damping case, we find that the hysteresis
loop is broken and becomes staggered. At that point A, the
mobility jumps to infinity and then drops to a constant at
point B and remains constant with increasing F �point C�.
The point B corresponds to the critical force F=Fc, where
the local minima of the corrugated plane vanish. When the
driving force decreases adiabatically, all the test particles are
kept in the running state and the mobility approaches a con-
stant, until the driving force becomes so small that most of
the test particles are trapped in the potential wells. At the
point D, the mobility falls to zero again. However, for the

FIG. 6. �Color online� Velocity distributions of the particle at t
=150 �a� and 330 �b�. The solid and dashed lines are the results of
the super-Ohmic �=1.7 and Ohmic �=1.0 cases, respectively. The
parameters used are F=0.75 and T=0.1.

FIG. 7. �Color online� �a� Fractional mobility times damping
constant as a function of driving force in the super-Ohmic damping
case with �=1.7. �b� Normal Ohmic damping result with �=0.5.
The solid and dashed lines correspond to the forward and backward
processes, respectively. The temperature is T=0.1.
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usual Ohmic damping case shown in Fig. 7�b�, we find that
bistability occurs in the region 0.7�F�1.4, which forms a
hysteresis loop. However, for the sub-Ohmic damping case,
we have not found a similar hysteresis loop of mobility like
the one that arises in the Ohmic damping case.

IV. SUMMARY

We have investigated the transport of a non-Ohmic
damped particle in a tilted periodic potential and reported an
interesting finding: The tilted periodic potential as a simple
equipment which not only enhances the diffusion coefficient,
but also changes the diffusive behavior of the particle. This is
due to the phenomenon of two motion modes: the locked and
the running states, which can appear and transform from one
to the other in the corrugated plane. In the sub-Ohmic damp-
ing case, the mean square displacement of the particle shows
a quasiperiodic property when the driving force is larger than
the critical value where the minima of the potential vanish.
For the super-Ohmic damping case, the two motion modes
can coexist and transform from one to the other �that is, there
exist two centers in the velocity distribution�. Thus the power
index for the mean square displacement of the particle is
enhanced. In comparison with the hysteresis loop of mobility
of the normal case, the hysteresis loop of mobility of a super-
Ohmic damping particle is broken.

The anomalous Brownian motion in a periodic potential is
useful for many applications occurring in areas such as con-
densed matter physics, chemical physics, molecular biology,
communication theory, and so on. We are confident that both
theoretical and experimental works in the future will help in
further clarification of all these intriguing issues and prob-
lems.
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APPENDIX: NUMERICAL METHODS FOR
FRACTIONAL CALCULUS

The so-called Riemann-Liouville fractional integral is de-
fined through �27�

t0
It

−�f�t� =
1

� ����t0

t

dt�
f�t��

�t − t��1−� , t � 0, � � 0,

�A1�

whereas its left inverse t0
Dt

� reads

t0
Dt

�
ª 0Dt

m
t0

It
�−m, m − 1 � � � m, m � N , �A2�

where 0Dt
m denotes the ordinary derivative of order m. In this

present work, the case of t0=0 is concerned. For complete-
ness, we define

0It
0 = 0Dt

0 = I , �A3�

where I is the identity operator. It is convenient to make use
of the discrete operators of translation �shift� and finite dif-
ferences to derive the approximate recursive expressions for
the fractional differentiation operator 0Dt

�. The theory of nu-
merical differentiation and integration �with equidistant grid
points� has been developed clearly in Chaps. 7–10 of Ref.
�28�. See also Chap. 6 of Ref. �29�.

Let ��R. We define the shifting operator E� and the
backward difference operator �� by their actions on a func-
tion u�t� for t�R,

E�u�t� = u�t + �� , ��u�t� = u�t� − u�t − �� . �A4�

We furthermore have the relation, with I as the identity op-
erator,

�� = I − E−�. �A5�

Using these notations, we write the approximation �u�t�
−u�t−��� /h for the derivative u��t� of a differentiable func-
tion u�t� as �hu�t� /h for a small positive h, with accuracy
O�h� as the function u�t� is sufficiently smooth. High-order
derivatives u�n��t�= 0Dt

nu�t� �n�N� with small h�0 can be
approximated by

��h
�n�u�t��/hn = h−n�I − E−h�nu�t� , �A6�

again in the case of sufficiently smooth u�t�, with order of
accuracy O�h�. The powers �h

�n� can be readily expanded via
the binomial theorem,

�h
�n� = �

j=0

n

�− 1� j
n

j
�E−jh. �A7�

This leads to the known formula

h−n�
j=0

n

�− 1� j
n

j
�u�t − jh� = 0Dt

nu�t� + O�h� . �A8�

The remarkable fact now is that these formulas can be
generalized to the case of noninteger order of the derivative.
Replacing the positive integer n by a positive real number �
amounts to using the formal power

�h
� = �

j=0

�

�− 1� j
�

j
�E−jh, �A9�

in analogy to the expansion �E−h replaced by the complex
variable z�

�1 − z�� = �
j=0

�

�− 1� j
�

j
�zj , �A10�
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which is convergent if 	z 	 �1. We thus get the Grünwald-
Letnikov approximation:

h−��h
�u�t� = h−��

j=0

�

�− 1� j
�

j
�u�t − jh� = 0Dt

�u�t� + O�h� .

�A11�

If u�t� decays to zero sufficiently fast as t→�, in particular if
u�t�=0 for t�0, �h

� will not diverge, and hence for the latter
case we have

h−��h
�u�t� = h−��

j=0

�t/h�

�− 1� j
�

j
�u�t − jh� . �A12�

By using the property of the Gamma function

������1 − �� =
�

sin����
,

we obtain the final recursion of the fractional calculus:

0Dt
�u�kh� =

h−�

��− ���j=0

k−1
��j − ��
��j + 1�

u��k − j�h� . �A13�
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